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1 Unbounded Fourier Coefficients and Bilinear Maps

1.1 Unbounded partial sums of Fourier coefficients

Last time we introduced an application of the Banach-Steinhaus theorem. Let Sn(f, 0) =∑N
−N cn(F ), where cn(f) is the n-th Fourier coefficient of f .

Proposition 1.1. There exists a 2π-periodic f ∈ C(R) such that the sequence (SN (f, 0))∞N=1

is unbounded.

Proof.

Sn(f, 0) =

N∑
n=−N

cn(f) =

∫ π

−π
DN (x)f(x) dx,

where D(x) =
∑N
−N e

inx is the Dirichlet kernel. We have

DN (x) =
sin((N + 1/2)x)

sin(x/2)
.

If the claim does not hold, we have that (Sn(f, 0)) is bounded for all f ∈ B, the Banach
space of continuous 2π-periodic functions with ‖f‖B = sup[−π,π] |f |. By the Banach-
Steinhaus theorem, there exists C > 0 such that |SN (f, 0)| ≤ C‖f‖B for all f ∈ B and
N ∈ N+. So ∣∣∣∣∫ π

−π
DN (x)f(x) dx

∣∣∣∣ ≤ ‖f‖B =⇒ ‖DN‖L1(−π,π) ≤ 1.

On the other hand,

‖DN‖L1(−π,π) =
2

2π

∫ π

0

| sin((N + 1/2)x)|
sin(x/2)

≥ 4

2π

∫ π

0

| sin((N + 1/2)x)|
x

dx

1



=
2

π

∫ (N+1/2)π

0

| sin(x)|
x

dx

≥ 2

π

N−1∑
n=1

∫ (n+1)π

nπ

| sin(x)|
x

dx

≥ 4

π2

N∑
n=2

1

n

=
4

π2
log(N) +O(1)

as N → ∞. If follows that the set of all f ∈ B such that (SN (f, 0))∞N=1 is bounded is of
the first category. By translation invariance, we get the same statement for (SN (f, x))∞N=1

for each fixed x ∈ R. Taking the union over all x ∈ Q, we get a set of the first category
such that if f is in the complement, then (Sn(f, x))∞N=1 is unbounded for all x ∈ Q.

Remark 1.1. Notice that for all f ∈ B, we have SN (f, x) = o(log(N)) uniformly in x,
as N → ∞. This follows as ‖D‖L1 = O(log(N)) and SN (f, x) = O(1) for 2π-periodic
f ∈ C1(R) (dense in B).

1.2 Bilinear maps

Let E,F,G be locally convex spaces, and let B : E × F → G be bilinear.

Proposition 1.2. Assume that B is continuous at 0 ∈ E × F . Then B is continuous.

Proof. Let UG be a neighborhood of 0 ∈ G, and let UE , UF be neighborhoods of 0 in E,F
such that if x ∈ UE and y ∈ UF , then B(x, y) ∈ UG. Write B(x+ x0, y + y0) = B(x, y) +
B(x, y0) +B(x0, y) +B(x0, y0). As UE , UF are absorbing, let ε > 0 be such that εx0 ∈ UE
and εy ∈ UG. Then B(x, y0) = B(x/ε, εy0) ∈ UG if x/ε ∈ UE . Similarly, B(x0, y) ∈ UG
if y/ε ∈ UF . When x ∈ UE ∩ εUE and y ∈ UF ∩ εUF , B(x + x0, y + y0) − B(x0, y0) ∈
UG + UG + UG.

We have that B : E×F → G is continuous iff for every continuous seminorm pG on G,
there exist continuous seminorms pE on E and pF on F such that

pG(B(x, y)) ≤ pE(x)pF (y)

for all x ∈ E and y ∈ F .

Definition 1.1. We say that a bilinear form B is separately continuous if the linear
forms x 7→ B(x, y) for fixed y and y 7→ B(x, y) for fixed x are continuous.

Theorem 1.1. Let E be locally convex and metrizable, F a Fréchet space, and G a locally
convex space. If the bilinear form B : E × F → G is separately continuous, then B is
continuous.
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Proof. Let U be a an open, convex, symmetric neighborhood of 0 ∈ G. Let V1 ⊇ V2 ⊇ · · ·
be a fundamental system of neighborhoods of 0 in E. Let

Aj = {y ∈ F : B(x, y) ∈ U ∀x ∈ Vj} =
⋂
x∈Vj

B−1(x, ·)(U)

As y 7→ B(x, y) is continuous, Aj is closed. It is also convex and symmetric. For any y ∈ F ,
x 7→ B(x, y) is continuous, so there exists j such that x ∈ Vj =⇒ B(x, y) ∈ U . In other
words,

⋃∞
j=1Aj = F . By the open mapping theorem, there exists some j such that Aj has

an interior point. Arguing as in the proof of the Banach-Steinhaus theorem, we get that 0
is an interior point of Aj ; i.e. there exists a neighborhood N of 0 ∈ F such that if y ∈ N
and x ∈ Vj , B(x, y) ∈ U . Thus, B is continuous at 0 and hence continuous.

Remark 1.2. It suffices to have a locally convex topology on E defined by countably many
seminorms (no Hausdorff property is needed).
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